
BaPCod — a generic branch-and-price code

Ruslan Sadykov∗1,2 and François Vanderbeck3

1Bordeaux-Sud-Ouest Inria Research Centre, 200 avenue de la
Vieille Tour, 33405 Talence, France

2Institut de Mathématiques de Bordeaux, Université de Bordeaux,
351 cours de la Libération, 33405 Talence, France

3Atoptima SAS, 16 place Sainte Eulalie, 33000 Bordeaux, France

March 20, 2023

Abstract

This document presents a user guide for BaPCod version 0.771, a
C++ library implementing a generic branch-cut-and-price solver. We give
guidelines for installing BaPCod, using its modelling language, BaPCod
parameterization, retrieving BaPCod statistics, and understanding BaP-
Cod output. We also present the VRPSolver extension of BaPCod which
allows one to model and efficiently solve a large number of vehicle routing
and related problems.

BaPCod was developed in Bordeaux University and Bordeaux Re-
search Center of Inria, France.

∗Corresponding author: ruslan.sadykov@inria.fr
1The most recent version of this user guide is available on the BaPCod website:

https://bapcod.math.u-bordeaux.fr

1

Contents

1 Introduction 3
1.1 Code structure . 4
1.2 Installation . 4
1.3 Generation of the BaPCod shared library 4
1.4 Creating a new application . 4
1.5 Running a demo or application 5
1.6 Citing BaPCod . 6

2 Modelling language 7
2.1 Environment handler . 7
2.2 Model handler . 8
2.3 Formulation handlers . 9
2.4 Variables and constraints . 11
2.5 Objective function . 12
2.6 Solution handler . 13
2.7 Branching . 14
2.8 Separation of cutting planes . 16
2.9 Pricing functor . 17

3 BaPCod configuration 19
3.1 Main parameters . 19
3.2 Column generation parameters 20
3.3 Cut generation parameters . 22
3.4 Stabilization parameters . 23
3.5 Primal heuristic parameters . 24
3.6 Strong branching parameters . 26

4 BaPCod statistics 28
4.1 Timers . 28
4.2 Records and counters . 29

5 BaPCod output 30

6 VRPSolver extension 32
6.1 VRPSolver pricing functor . 32
6.2 VRPSolver cut separation functors 35
6.3 VRPSolver branching functors 37
6.4 VRPSolver paramerization . 38
6.5 VRPSolver output . 40

7 Perspectives 42

2

1 Introduction

BaPCod is a prototype academic code that solves Mixed Integer Programs
(MIP) by application of a Dantzig-Wolfe reformulation technique. The reformu-
lated problem is solved using the branch-cut-and-price algorithm which includes
the column generation procedure to solve the linear relaxation in each node of
the branch-and-bound tree. The specificity of this prototype is to offer a “black-
box” implementation of the method:

1. the input is the set of constraints and variables of the MIP in its natural/
compact formulation;

2. the user specifies which of these constraints and variables define the sub-
systems on which the decomposition is based (it is handy to test different
decompositions);

3. the reformulation is automatically generated by the code, without any
input from the user to define master columns, their reduced cost, pricing
problem, or Lagrangian bound;

4. a default column generation procedure is implemented that relies on an
underlying LP/MIP solver to handle master and subproblem but the user
can define a specific solver for the pricing problem;

5. a branching scheme that preserves the pricing problem structure is offered
by default, it runs based on priorities and directives specified by the user
on the original variables;

6. the user can specify custom cut generation callbacks and custom branching
callbacks;

7. preprocessing, restricted master and diving primal heuristics, some stabi-
lization techniques, and strong branching are available for use;

8. VRPSolver extension can be used, which includes a resource constrained
shortest path problem (RCSP) solver, and some families of robust and non-
robust cut separation and branching functors; these components can be
used to devise state-of-the-art branch-cut-and-price algorithms for vehicle
routing and related problems. VRPSolver extension is distributed in the
compiled form.

Readers of this user guide are supposed to be familiar with the theory
of Dantzig-Wolfe reformulations, the column generation procedure, and the
branch-cut-and-price method (see for example [3] for an introduction).

The source code of BaPCod can be obtained on its web-page https://

bapcod.math.u-bordeaux.fr after accepting the Inria licence for academic use.
The following contacts can be used to communicate with the authors of the code:

laurent.facq@math.u-bordeaux.fr — issues with installation and running
of demos;

francois.clautiaux@math.u-bordeaux.fr — other issues.

3

https://bapcod.math.u-bordeaux.fr
https://bapcod.math.u-bordeaux.fr

1.1 Code structure

We suppose that the code is cloned or extracted to the BapcodFramework folder.
The main folder structure is the following

BapcodFramework

-- Applications

-- Bapcod

-- CMake

-- CMakeLists.txt

-- Documentation

-- Demos

-- License.pdf

-- README.md

-- Scripts

-- Tests

-- Tools

Applications folder should contain user applications, no applications are
provided by default. We explain how to create an application in Section 1.4.
Bapcod folder contains the C++ source code of BaPCod. Cmake folder and
file CMakeLists.txt contain CMake scripts necessary for compiling and link-
ing BaPCod, its demos and user applications. Documentation folder contains
the source of the present user guide. Demo folder contains demos which come
together with BaPCod source code. LICENCE.pdf and README.md files contain
the license and the installation instructions. The license stipulates that you
can use BaPCod for free for academic purposes. Scripts folder contains some
scripts necessary for BaPCod installation and other tasks. Some unit tests are
available in Tests folder (for the moment, only for the VRPSolverEasy inter-
face). Tools folder contains the compiled RCSP library, which is necessary for
using the VRPSolver extension. RCSP library is pre-compiled for three major
operating systems (Mac OS, Linux, and Windows). Third-party libraries are
also installed to the Tools folder.

1.2 Installation

The installation instructions are given in the README.md file.

1.3 Generation of the BaPCod shared library

BaPCod shared library is needed for the Julia interface for VRPSolver (https:
//github.com/inria-UFF/BaPCodVRPSolver.jl) and for the VRPSolverEasy
Python package (https://github.com/inria-UFF/VRPSolverEasy). Instruc-
tions how to generate the BaPCod shared library are also given in the README.md
file.

1.4 Creating a new application

A demo or an application has the following structure by default

<ApplicationOrDemoName>

-- CMakeLists.txt

4

https://github.com/inria-UFF/BaPCodVRPSolver.jl
https://github.com/inria-UFF/BaPCodVRPSolver.jl
https://github.com/inria-UFF/VRPSolverEasy

-- config

-- data

-- include

-- src

-- tests

File CMakeLists.txt contains CMake instructions necessary for compiling
and linking the application or demo. config folder contains configuration files.
There are usually two configuration files: one contains BaPCod parameters, and
another contains application-specific parameters. data folder contains instance
files. include folder contains header files. src folder contains source files. tests
folder contains files and scripts to run non-regression tests. It is highly advised
to create several non-regression tests for every user application. Non-regression
tests usually verify that the solution value obtained after the run coincides with
the optimal value or the dual bound value.

A standard way to create a new application is by modification of a similar
available demo. If there is no demo which is similar to the intended application,
please request the authors of the code to produce a similar demo. One advantage
of this method is to provide for the user a working tree that already contains
the files needed by cmake for the compilation and pre-filled configuration and
test files. Another advantage is to provide for the user the code structure that
is easier to modify when making up the new application rather than starting
from scratch.

First, copy the folder with the corresponding demo to the
BapcodFramework/Applications folder. Then modify the folder name to the
application name, and add the new folder name to file
BapcodFramework/Applications/CMakeLists.txt inside add_subdirectories()
so that the makefile is produced next time your run cmake.

Afterwards, the code of the new application should be modified according
to the problem one wants to solve. It is advised to change the names of all
classes in the application code or to change the name of the namespace used in
the code, in order to avoid a clash between different demos and applications.
Usually, to adapt the code to the new application, one should change the class
with application-specific parameters, the data class, functions to read the data,
the model and the callbacks (pricing, cut generation, branching), if applicable.

After the code modification is complete, the makefile of the application
should be generated. For that, run the following commands from the BapcodFramework
folder (on Mac OS and Linux)

cd build

cmake ..

On Windows

cmake -G "Visual Studio 16 2019" -A x64 -B "build"

These commands should also be run each time you add or delete header or
source files for an application.

1.5 Running a demo or application

To run the application or demo, execute the following commands on Linux or
MacOS from the BapcodFramework folder

5

cd build/Demos/<DemoName> # for a demo

cd build/Applications/<AppName> # for a application

make -j

bin/<DemoOrAppName> -b <BaPCod_config> -a <app_config> -i <instance>

OnWindows, run the following commands from the BapcodFramework folder

cmake --build build --config Release --target <DemoOrAppName>

cd build/Demos/<DemoName> # for a demo

cd build/Applications/<AppName> # for an application

bin/Release/<DemoOrAppName>.exe -b <BaPCod_config> -a <app_config> -i <instance>

Here <AppName> is the name of the application, <BaPCod_config> is the (rel-
ative) path to the configuration file with BaPCod parameters, <app_config> is
the (relative) path to the configuration file with application-specific parameters
(if such parameters exists), and <instance> is the (relative) path to the date
instance file. You can specify additional BaPCod and application-specific pa-
rameters in the command line using the format --<paramName> <value> . If
different values are given for the same parameter in the configuration file and
in the command line, the value given in the command line has more priority.
See Section 3 for an overview of BaPCod parameters. In addition, in the com-
mand line one can specify -t <tree_file> parameter to change the default
(relative) path (which is BaPTree.dot) to the file where the branch-and-bound
tree information will be stored in .DOT format for later visualisation.

It is highly advised to use a version control system (for example Git) for
user applications. It is standard to create a different repository for every user
application.

1.6 Citing BaPCod

If you use BaPCod, please cite the present document:
Ruslan Sadykov and Francois Vanderbeck. BaPCod— a generic branch-and-
price code. Technical report HAL-03340548, Inria Bordeaux Sud-Ouest, 2021.

In addition, if you use the following components of BaPCod, we encourage
you to cite the corresponding papers listed below.

• If you use stabilization (automatic dual price smoothing stabilization is
activated by default), please cite paper [11]:
Artur Pessoa, Ruslan Sadykov, Eduardo Uchoa, and Francois Vanderbeck.
Automation and combination of linear-programming based stabilization
techniques in column generation. INFORMS Journal on Computing,
30(2):339–360, 2018.

• If you use primal heuristics, please cite paper [17]:
Ruslan Sadykov, Francois Vanderbeck, Artur Pessoa, Issam Tahiri, and
Eduardo Uchoa. Primal heuristics for branch-and-price: the assets of
diving methods. INFORMS Journal on Computing, 31(2):251–267, 2019.

• If you use the VPRSolver extension, please cite paper [12]:
Artur Pessoa, Ruslan Sadykov, Eduardo Uchoa, and Francois Vanderbeck.
A generic exact solver for vehicle routing and related problems. Mathe-
matical Programming, 183:483–523, 2020.

6

2 Modelling language

This section overviews the modelling language, i.e. the C++ interface for BaP-
Cod. To use this interface, one needs to include the corresponding header file:

#include "bcModelingLanguageC.hpp"

BaPCod models are similar to Mixed Integer Programs (MIPs): the user
needs to define (continuous or integer) variables, linear constraints and the
objective function. Models are defined using of original variables, i.e. variables
of the original compact formulation. There are however following differences.

The user needs to specify the decomposition: i.e. which constraints are du-
alized (remain in the master formulation) and which constraints are imposed
when solving the subproblem formulations (or pricing problems). Therefore, at
least two formulations should be defined: master one and at least one subprob-
lem formulation. Each subproblem formulations has integer bounds specifying
how many solutions of this subproblem (i.e. how many columns generated by
this pricing problem) can participate in the global solution of the model. These
bounds are useful to define identical subproblems.

One can also use BaPCod to solve a MIP without applying decomposition;
this may be useful when benchmarking a decomposition against the original
formulation. For this, one should define a single formulation and solve it (instead
of solving the model).

Each variable belongs to a formulation. Subproblem constraints may involve
only variables belonging to the corresponding subproblem formulation. On the
contrary, master constraints may involve variables belonging both to the master
formulation (we call them pure master variables) and to the subproblem formu-
lations. Coefficients of subproblem variables in the master constraints determine
the coefficients of columns in these constraints.

The user has a possibility to define additional functors (C++ classes) to
improve the performance of BaPCod. Functors are enhanced versions of call-
backs. A functor may have several functions which are called in different stages
of the solution process. The main functor is the pricing one which may be
defined for a subproblem formulation for managing the corresponding pricing
problem. Another important functor is to separate robust cutting planes. Such
cutting planes are defined similarly to standard constraints using original vari-
ables. The user can also define a functor for generation of robust branching
constraints. Defining non-robust cutting plains and branching constraints is
also possible but reserved for an advanced use. The VRPSolver extension pre-
defines a certain number of functors which are used for solving vehicle routing
and related problems. This extension is reviewed in Section 6.

2.1 Environment handler

Every time BaPCod is used, one should first declare an environment handler of
type BcInitialisation using constructor

BcInitialisation(int argc , char *argv[],

std:: string config_filename = "config/bcParams.cfg");

7

Here argc and argv are the standard parameters of the main() function for
command line arguments, and config_filename is the default (relative) path
to the configuration file with BaPCod parameters (for the case -b parameter
does not present in the command line).

Alternatively, one can declare an environment handler using constructor
without parameters.

BcInitialisation ();

In this case case, all parameters are initialized with default values.
The environment handler has several useful methods.

UserControlParameters & param ();

This method allows one to obtain the object with basic BaPCod parameters.
One then can read and modify these parameters. The available parameters are
reviewed in Section 3.

void bcReset ();

This method should necessarily be called between two calls to BcModel::solve()
function (of a model associated with this environment handler) in order to reset
internal counters.

Finally, for obtaining the statistics of the execution on can use the methods

double getStatisticValue(const std:: string & statName);

long getStatisticCounter(const std:: string & statName);

double getStatisticTime(const std:: string & statName);

to get values of individual statistics (records, counters, and timers). See Sec-
tion 4 for an overview of BaPCod statistics.

2.2 Model handler

The model handler is used to define and solve BaPCod models. Every model
should be associated with a BaPCod environment handler, specified in the model
constructor:

BcModel(const BcInitialisation & bapcodInit ,

const std:: string & modelName = "Model");

The main method of the handler solves the model:

BcSolution BcModel :: solve ();

It returns the best found solution. The solution returned is disaggregated by
default, see Section 2.6 for details.

Solution management callback can be attached to a model:

8

void attach(BcSolutionFoundCallback * solutionFoundCallbackPtr);

This callback is called every time a solution is found which is considered to be
feasible by the model. This callback can be used to check the feasibility of the
solution (and thus the correctness of the model) and possibly show and/or store
it for future use.

2.3 Formulation handlers

Formulation handler BcFormulation serves to manage formulations. The mas-
ter formulation can be created or obtained using the constructor

BcMaster(BcModel & model , const std:: string & name = "master");

Subproblem formulations are handled in an array of type BcColGenSpArray.
This array is created or obtained using the constructor

BcColGenSpArray(BcModel & model , const std:: string & name = "colGenSp");

BcColGenSpArray has two operators operator() and operator[] to access
individual formulations in the array. These operators take integer indices as
parameters. The first operator creates the formulation with given indices if it
does not exists. If no index is given, 0 is used by default. The second operator
does not create formulation; if the formulation with given indices does not exist,
an error occurs. For example, the following code creates a model with the master
formulation and two subproblem formulations.

BcInitialisation bcInit(argc , argv);

BcModel model(bcInit);

BcMaster master(model);

BcColGenSpArray colGenSp(model);

colGenSp (0);

colGenSp (1);

The master formulation is created automatically if BcColGenSpArray is con-
structed.

The master formulation of a subproblem one can be obtained with method

const BcFormulation BcFormulation :: master () const;

It returns BcMaster handler which inherits from BcFormulation. If the formu-
lation is not a subproblem one, the returned master formulation is not defined.
The same method, defined for BcModel, allows one to retrieve the master for-
mulation of a model.

The list of subproblem formulations of a master one can be obtained with
method

const std::list < BcFormulation > & colGenSubProblemList () const;

9

If the formulation is not the master one, the returned list is empty.
For a subproblem formulation, one may define multiplicity bounds, i.e. the

minimum and maximum number of solutions (i.e. columns) from this formu-
lation which can participate in the global model solution. These bounds will
define convexity constraints in the restricted master problem. The bounds are
set with operators operator>=, operator<=, and operator==. For example,
the code

colGenSp [0] >= 1;

colGenSp [1] <= 2;

sets lower bound one for the subproblem formulation with index 0 (by default,
the lower bound is equal to 0), and upper bound two for the subproblem for-
mulation with index 1 (by default, the upper bound is equal to ∞).

For a subproblem formulation, one may also define the fixed cost, i.e. the
value which will be added to the coefficient in the objective function of every
column coming from this subproblem. The method is

void BcFormulation :: setFixedCost(const double & value);

By default, the fixed cost is equal to zero. For example, in the bin packing
model, the fixed cost of the knapsack subproblem may be set to 1.0. The same
setFixedCost method is defined for BcColGenSpArray. It sets the same fixed
cost for all subproblem formulations in the array.

The master formulation can be initialized with a set of columns using two
methods of BcFormulation:

void initializeWithSolution(BcSolution & sol);

void initializeWithColumns(BcSolution & sol);

These two methods should be called after completely defining the master and
subproblem formulations. The solution passed should be disaggregated (see
Section 2.6). The first method updates the global solution of the model and
adds its subproblem solutions as columns to the restricted master problem (if
parameterized accordingly, see Section 3.2). The second method adds columns
corresponding to subproblem solutions in the provided solution chain sol to the
restricted master problem (independently of the parameterization and without
updating the global solution of the model).

If one wants to solve a MIP model without applying decomposition, a single
formulation should be declared using constructor

BcFormulation(BcModel & model , const std:: string & name = "directForm");

Then, instead of solving the model, one should solve this formulation using
method

BcSolution BcFormulation :: solve ();

10

2.4 Variables and constraints

Variables and constraints are defined using arrays:

BcVarArray(const BcFormulation & formulation , const std:: string & name);

BcConstrArray(const BcFormulation & formulation , const std:: string & name = "");

Every array of variables or constraints should belong to a formulation, either to
the master or the a subproblem one. Note that these constructors are used in
two ways. First, one can create a new array of variables or constraints before
solving the model. After starting the solution process, one can retrieve the
existing array by passing its name as the parameter. This functionality is used
to retrieve existing variables and constraints in user-defined functors.

The same operators operator() and operator[] as for formulations are
used to access individual elements in the array. Again, the first operator creates
the element with given indices if it does not exist, the second operation raises
an error in this case. Note that the syntax of these operators is different for
multi-dimensional indices:

BcVarArray xVar(colGenSp [0], "X");

xVar (0 ,0);

xVar [0][0] <= 1;

This code creates variable x0,0 belonging to the subproblem formulation with
index 0, and then sets the upper bound of this variable to 1. The type of
individual variables is BcVar, and the type of individual constraints is BcConstr.

For an array of variables or constraints, one can define index characters:

xVar.defineIndexNames(MultiIndexNames(’i’,’j’));

This characters are used in names of individual variables. For example, the
name of variable xVar[0][0] will be "Xi0j0".

For an array of variables, their type is set using method type:

xVar.type(’B’);

’B’ stands for binary, ’I’ for integer, and ’C’ for continuous. By default, vari-
ables are continuous. The same method is also defined for individual variables.

For an array of variables, or individual variables, one can define their bounds
using operators operator<= and operator>=. For subproblem variables these
bounds are local and valid only when solving the subproblem. In the global
model solution, the total value of a subproblem variable can violate its local
bounds. To set global bounds on subproblem variables, one should define the
corresponding master constraints.

For an array of constraints, or individual constraints, one can define their
sense and right-hand size using operators operator<=, operator>=, and operator==.
For example the code

BcConstrArray setPackConstr(master(), "SPC");

setPackConstr (0) <= 1;

11

creates a less-or-equal constraint with the right-hand-size value equal to 1.
For an array of constraints, or individual constraints, one can indicate whether

they will be used in preprocessing, using method

void toBeUsedInPreprocessing(bool flag);

To set coefficients of variables in constraints, one may use operators operator+=,
operator+, operator-=, and operator-. For example, the code

BcConstrArray setCovConstr(master(), "SCC");

setCovConstr.defineIndexNames(MultiIndexNames(’k’));

setCovConstr (0) >= 2;

BcVarArray yVar(master(), "Y");

setCovConstr [0] += xVar [0][0] + 2 * y[0];

setCovConstr [0] -= 0.5 * xVar [0][0];

defines constraint 1
2x0,0 + 2y0 ≥ 2 with name "SCCk0".

2.5 Objective function

The objective function of a model or a formulation (when solving a MIP) can
be obtained using the constructors

BcObjective(BcModel & model);

BcObjective(BcFormulation & bcForm);

The sense and integrality of the objective function is determined using the
method

void setMinMaxStatus(const BcObjStatus :: MinMaxIntFloat & newObjectiveSense);

Possible arguments are BcObjStatus::minInt and BcObjStatus::minFloat.
One may not use maximization objective with BaPCod for the moment, as there
are known bugs when it is used. One can transform maximization objective
to minimization by multiplying it by −1. By default, the objective function
is “float”, which mean it can take any value. If it is known that the objective
function value of any feasible solution is integer, one should give this information
to the solver by setting the objective function type to “integer”. In this case, the
lower bound will be rounded up before checking whether a branch-and-bound
node should be pruned, making the search tree smaller.

Coefficients of the variables in the objective function are set in the same way
as for constraints. For example, the code

BcObjective objective(model);

objective.setMinMaxStatus(BcObjStatus :: minInt);

objective += yVar (0) + 2 * yVar (1);

sets the objective function to min y0+2y1 and states that it can take only integer
values. Both master and subproblem variables may participate in the objective
function.

The initial upper bound for the objective function value (i.e. the cut-off
value) can be set using operator operator<=. For example, the code

12

objective <= 100;

sets the cut-off value to 100, meaning that all branch-and-bound nodes will be
pruned as soon as the lower bound becomes strictly greater than 99 (as the
objective function is known to be integer as indicated above). Setting initial
upper bound to a value which is as close as possible to the optimum value is
important to decrease the size of the search tree.

Another important method sets the initial coefficient of artificial variables
in the objective function:

void setArtCostValue(const double & cost);

In some cases, BaPCod may wrongly declare the model infeasible if the value
of this coefficient is below the optimum value. Therefore, a good practice is
to set this coefficient to a known upper bound on the optimum solution value.
Decreasing the value of this coefficient may help to avoid numerical issues when
they are present.

2.6 Solution handler

In BaPCod modelling interface, solutions are stored using handlers of type
BcSolution. This handler may contain either a single solution or several solu-
tions in a chain. The constructor of this handler is

BcSolution(const BcFormulation & formulation);

Each solution belongs to a formulation. A solution of a subproblem formu-
lation defines the corresponding column in the restricted master problem. To
set a value of a variable in the solution, operators operator= and operator+=

is used. For example, the code

BcSolution bcSol(colGenSp [0]);

x[0][0] = 2;

bcSol += x[0][0];

defines a solution x0,0 = 2 (all other variables take value 0) for the subproblem
formulation with index 0.

To add a solution to the solution chain, one can use method

BcSolution & appendSol(BcSolution & sol);

This method is useful, when one needs to pass several solutions. For example,
the user-defined pricing problem solver may return several solutions so that
multiple columns are added to the restricted master LP in a single column
generation iteration.

To read all solutions in a solution chain, the following methods are useful:

BcSolution next() const;

bool defined () const;

13

One can obtain next solution in a loop until the current solution is not defined.
To retrieve the variables with non-zero values in a solution, one can use

methods

void extractVar(std::set < BcVar > & varSet);

void extractVar(const std:: string & genericName , std::set < BcVar > & varSet);

The first method retrieves all non-zero variables in the solution. The second
one retrieves only variables in the array with the given name. Once the non-
zero variables are extracted, values of particular variables can be obtained using
method

double BcVar :: solVal () const;

Solutions of the master formulation can be standard (or aggregated) and
disaggregated. A standard solution has values of all variables, both master
and subproblem ones, in the aggregated form. This means that the value of
a subproblem variable in this solution is the weighted sum of values of this
variable in solutions corresponding to columns, where weights are values of the
columns in the master solution. A disaggregated solution is a chain of solutions,
where the first solution contains values of pure master variables, and all other
solutions in the chain correspond to columns in the master solution. For every
such solution in the chain, one can retrieve the subproblem solution it belongs
to and its multiplicity, i.e. the value of the corresponding column in the master
solution:

BcFormulation formulation () const;

int getMultiplicity () const;

By default, the solution returned by the solver is disaggregated.

2.7 Branching

One can use three types of branching in BaPCod: branching on variables,
branching on constraints, and custom “algorithmic” branching (with user-defined
functors).

To branch on variables, one needs to define their branching priorities. For
that, the following methods exists for an array of variables

const BcVarArray & priorityForMasterBranching(double priorityValue);

const BcVarArray & priorityForSubproblemBranching(double priorityValue);

const BcVarArray & priorityForRyanFosterBranching(double priorityValue);

If the branching priority value is non-positive, the corresponding branching
strategy is not applied. Default priority values for master branching, subprob-
lem branching, and Ryan&Foster branching are 1.0, 0.1, and -1.0. The corre-
sponding variable branching strategies are: 1) branching in master on the total
value of the variable; 2) Vanderbeck branching on bounds of subproblem vari-
ables, proposed in [18]; 3) Ryan& Foster branching, proposed in [15]. It suffices
to use only the first branching strategy if the upper bound of all subproblem

14

formulations is one, i.e. in the absence of identical subproblems. Otherwise, if
all subproblem variables are binary, Ryan& Foster branching may be used. In
the most general case (identical subproblems with general integer subproblem
variables), the second branching strategy should be used to ensure the exact
solution. If the pricing functor is used for a subproblem, it should explicitly
support Ryan& Foster branching in order to use it. The pricing functor needs
to support arbitrary bounds on subproblem variables in order to use Vander-
beck branching. Finally, we advise to use Vanderbeck branching only if it is
really needed, as we will not likely be able to correct possible bugs in the im-
plementation. For variables which belong to the master formulation, only the
first branching strategy is possible.

To branch on constraints, one should define array(s) of branching constraints
using constructor

BcBranchingConstrArray(const BcFormulation & formulation ,

const std:: string & name ,

const SelectionStrategy & priorityRule

= SelectionStrategy :: MostFractional ,

const double & priorityLevel = 1.0);

Here the priorityLevel is the branching priority value of all constraints in
this array. After creating the array, branching constraints can be defined in
the same way as standard constraints, see Section 2.4. The only difference
is that the sense and the right-hand-size of branching constraints are ignored.
Branching constraints are not added to the formulation in the beginning of the
solution process. During branching, the left-hand-side value v of each branching
constraint is computed using the current solution of the restricted master LP.
In the case v is fractional, two constraints with the same left-hand-size are
generated for two child nodes of the branch-and-bound tree: one is less-or-equal
to ⌊v⌋, and the second is greater-or-equal to ⌈v⌉.

To add a custom “algorithmic” branching strategy one should define a func-
tor which inherits from class BcDisjunctiveBranchingConstrSeparationFunctor
and associate it to an array of branching constraints (such an array should not
contain any pre-defined branching constraints) using method

const BcBranchingConstrArray &

attach(BcDisjunctiveBranchingConstrSeparationFunctor

* separationRoutinePtr);

The functor should implement the following operator

bool operator ()(BcFormulation formPtr ,

BcSolution & primalSol ,

const int & candListMaxSize ,

std::list <std::pair <BcConstr , std::string >>

& retBrConstrList);

This function receives the master formulation handler, the solution handler
which contains the current solution of the restricted master LP, and the maxi-
mum number of branching constraints which will be processed (others will be ig-
nored). All branching constraints generated should be added to list retBrConstrList

15

of pairs. The first member of the pair is the branching constraint generated, and
the second member is its description string. The description string is used to
recognise the same branching constraint when collecting the branching history.
The branching history is used to select good branching candidates in the strong
branching. In the function, the branching constraints should be defined in the
same way as above (their sense and right-hand-side are ignored). The function
should return true if and only if at least one branching constraint has been
added to retBrConstrList.

All defined branching strategies are applied in decreasing order of their
branching priority values. If no branching candidate is found for branching
strategies with a certain priority value, strategies with the next lower priority
value will be tried. If strong branching is used (see Section 3.6 for parameter-
ization), branching strategies with lower priority are tried only if the number
of generated branching candidates is lower than the required number of candi-
dates. One particularity is that, if at least one branching candidate is found,
then branching strategies with lower priority are tried only if their priority value
is not smaller than the priority value of the found candidates rounded down.

2.8 Separation of cutting planes

A family of cutting planes can be defined using constructor

BcCutConstrArray(const BcFormulation & formulation ,

const std:: string & name ,

const char & type = ’F’,

const double & rootPriorityLevel = 1.0,

const double & nonRootPriorityLevel = 1.0);

A family of cutting plains is similar to an array of constraints. The difference is
that the cuts are added during the solution process by the cut separation func-
tor. Two important parameters of the constructor are type and priorityLevel.
“Facultative” cuts (type ’F’) are cuts which are separated only for fractional
solutions. “Core” cuts (type ’C’) are separated both for fractional and integer
solutions, similarly to lazy constraints. Families of cuts are separated in the
decreasing order of their priority level. A family of cuts with the next lower pri-
ority level is separated only if no cuts from families of higher priority level could
not be separated or if the tailing-off condition for cuts with the previous higher
priority level was reached. The parameterisation of the tailing-off condition in
given in Section 3.3. Priority level of the cut families may be different in the
root node. The following method can be used to set the root priority level:

void setRootPriorityLevel(const double & rootPriorityLevel);

To add a custom cut separation procedure for a family of cuts, one should de-
fine a functor which inherits from class BcCutSeparationFunctor and associate
with the cut family using the method

const BcCutConstrArray & attach(BcCutSeparationFunctor

* separationRoutinePtr);

The functor should implement the following operator

16

int operator ()(BcFormulation formPtr ,

BcSolution & primalSol ,

double & maxViolation ,

std::list < BcConstr > & cutList);

This function receives the master formulation handler, the solution handler
which contains the current solution of the restricted master LP. Parameter
maxViolation should be ignored. All generated cutting planes should be added
to list cutList. The cutting planes are defined in the same way as normal
constraints. This functor should return the number of cutting planes added to
cutList.

Separation of non-robust cuts and taking into account non-robust cuts when
solving the pricing problem is reserved for advanced use. Please contact the
authors if you want to use this functionality.

2.9 Pricing functor

To solve the pricing problem by a user-defined algorithm, one should define a
pricing functor which inherits from class BcSolverOracleFunctor and attach
it to the corresponding subproblem formulation using method

const BcFormulation & attach(BcSolverOracleFunctor * oraclePtr);

For a pricing functor, one may implement several functions which are called
in different moments of the solution process. The main function operator()

serves to solve the pricing problem in each iteration of the column generation
procedure:

bool operator ()(BcFormulation spForm ,

int colGenPhase ,

double & objVal ,

double & dualBound ,

BcSolution & primalSol);

This function receives the subproblem formulation handler. All the informa-
tion needed for solving the pricing problem can be retrieved using this handler.
The only additional information passed by function arguments is colGenPhase,
which is the current column generation phase. Phase zero is the exact phase,
and phases one and above are heuristic phases. More information about the col-
umn generation phases is given in Section 3.2. The function should return the
best solution value found in objVal, the lower bound on the solution value in
dualBound, and the best found solution in primalSol. If colGenPhase is equal
to 0 and the pricing problem is solved to optimality, then values of objVal and
dualBound should all be equal. If colGenPhase is equal to 0 then dualBound

should be equal to a valid lower bound on the optimal solution of the pricing
problem, otherwise the optimality of the solution found by BaPCod is not guar-
anteed. If multiple solutions are found, they can be added to primalSol by
using method appendSol(), see Section 2.6. The function should return true

if and only if at least one solution to the pricing problem has been found.

17

To obtain current information about variables of the subproblem formula-
tion, one needs to retrive these variables (BcVar handlers) using subproblem for-
mulation handler spPtr, the BcVarArray constructor and operator operator[]
(see Section 2.4). The following methods of BcVar are used:

double BcVar :: curCost () const;

double BcVar :: curLb() const;

double BcVar :: curUb() const;

The first method retrieves the current reduced cost of the variable, the other two
retrieve the current lower and upper bounds on the values of this variable in any
feasible solution of the pricing problem. These bounds may be changed by the
preprocessing or by branching constraints (if Vanderbeck branching is used, see
Section 2.7). If the algorithm for solving the pricing problem does not support
modified bounds on variable values, the preprocessing should be turned off (or
at least the preprocessing of subproblem formulations, see parameterisation in
Section 3.1), and Vanderbeck branching should not be used.

The pricing problem solved by the user-defined functor should not take into
account the dual values of the master convexity constraints. Therefore, a so-
lution to the pricing problem with a negative value does not necessarily cor-
responds to a column with a negative reduced cost. The solution value which
corresponds to the zero reduced cost in the current column generation iteration
can be obtained by the method

double BcFormulation :: zeroReducedCostThreshold () const;

A useful function which may be implemented for the pricing functor is

bool prepareSolver ();

This function is called after building the model and may be used to initialize
the pricing functor. The function should return true if and only if the pricing
functor initialization succeeds.

Two more useful functions of the functor are

BcSolverOracleInfo * recordSolverOracleInfo(const BcFormulation spPtr);

bool setupNode(BcFormulation spPtr , const BcSolverOracleInfo * infoPtr);

The first function is called at the end of a node in the branch-and-bound tree.
It can be used to save the current state of the pricing functor to a structure or
class which inherits from BcSolverOracleInfo. The second function is called
before treating any node in branch-and-bound tree except the root node. This
function receives as an argument the pointer to the structure created by the first
function at the end of the parent node. So, these two functions are typically
used to ensure that the state of the pricing functor is restored to the state of
the parent node when the solution process goes from one node in the branch-
and-bound tree to another. The second function is also used to retrieve the
current set of active Ryan&Foster constraints For this, the following method of
BcFormulation is used:

18

void getRyanAndFosterBranchingConstrsList(

std::list <BcRyanAndFosterBranchConstr >

& ryanFostBranchConstrList) const;

Function setupNode() should return true if and only if the pricing problem
becomes infeasible (for example because of non-compatibility of Ryan&Foster
branching constraints).

Other functions of the pricing functor are reserved for advanced use. Please
contact the authors if you want to use such functionality as the subproblem vari-
able fixing based on reduced costs, enumeration of proper columns (for example,
enumeration of elementary routes), a dynamic adjustment of the subproblem re-
laxation, or influencing cut separation from the pricing problem.

3 BaPCod configuration

This section lists the most important parameters of BaPCod. These parameters
should be put to the BaPCod configuration file, see Section 1.5. If a parameter
is missing in the configuration file, BaPCod will its default value, shown below.

3.1 Main parameters

GlobalTimeLimitInTick = 2147483645 # Time limit in ticks

If you want to set the time limit in seconds, use the parameter

GlobalTimeLimit = 0 # Time limit in seconds to solve the model

Parameter GlobalTimeLimitInTick is used only if GlobalTimeLimit = 0.

MipSolverMaxBBNodes = 2000000 # max. nodes number for the MIP solver

MipSolverMaxTime = 360000 # time limit in seconds for the MIP solver

MipSolverMultiThread = 0 # number of threads for the MIP solver

These options are valid for the underlying MIP solver, which is used to solve the
pricing problems (if BaPCod is parameterized for that), the restricted master
problem as a MIP in the corresponding heuristic, and the enumerated master
(if the pricing functor supports subproblem solution enumeration). If the value
of parameter MipSolverMultiThread is equal to 0 then the number of threads
is determined automatically by the underlying MIP solver. BaPCod itself does
not use parallelisation. Therefore, setting parameter MipSolverMultiThread

to 1 makes the whole solution process to use a single thread.

OptimalityGapTolerance = 1e-6

If the relative gap between lower and upper bound is below this value, the col-
umn generation procedure terminates. Also, the node is pruned in the branch-
and-bound tree if the relative difference between the global upper bound and
the lower bound of the node is below this tolerance.

19

ApplyPreprocessing = true # use pre -processing or not

PreprocessVariablesLocalBounds = true # adjust bounds of subprob. vars or not

By default, BaPCod pre-processes both master and subproblem formulations.
This procedure adjusts bounds of variables and deactivates redundant con-
straints. The second parameter determines whether bounds of subproblem vari-
ables are adjusted or not. This parameter should be set to false if a user-defined
pricing problem functor is used and it does not support changing bounds on val-
ues of subproblem variables. The performance of the diving heuristic may be
significantly reduced if the preprocessing in the subproblems is switched off.

MaxNbOfBBtreeNodeTreated = 100000

treeSearchStrategy = 1

OpenNodesLimit = 1000 # max. number of nodes in breadth -first strategy

The first parameter here limits the total number of explored nodes in the BaP-
Cod branch-and-bound tree. There are primary and secondary branch-and-
bound trees. The second parameter can take two values: 0 (“breadth-first”
exploration strategy for the primary tree, i.e. the open node with the small-
est lower bound is considered next), and 1 (“depth-first’ exploration strategy
for the primary tree, the open node with the largest depth is considered first).
Parameter OpenNodesLimit sets the maximum number of open nodes in the
primary tree. When this limit is reached, newly created nodes are pushed to
the secondary branch-and-bound tree, which is always explored in the “depth-
first” manner. We return to the primary tree when the secondary one becomes
empty.

DEFAULTPRINTLEVEL = -1 # verbosity of the BaPCod output

Possible values here are -2 (no output except errors and important warnings),
-1 (reduced output, one line per 10 column generation iterations), 0 (standard
output, one line per one column generation iteration). Positive values are not
recommended as the output quickly becomes overwhelming. More details about
output are given in Section 5.

solverName = CPLEX_SOLVER # underlying LP and MIP solver

Can be set to CLP_SOLVER if BaPCod was appropriately configured by Cmake
(see README.md file for instructions). Note that certain BaPCod features cannot
be used with CLP solver, as the latter is not a MIP solver. Also the overall
performance may be degraded.

3.2 Column generation parameters

SolverSelectForMast = a # algorithm to solve the restricted master LP

Possible values here are a (automatic LP solver), p (primal simplex method),
d (dual simplex method), b (barrier method without crossover), and c (barrier
method with crossover).

20

colGenSubProbSolMode = 2 # algorithm to solve the pricing problems

Possible values here are 2 (MIP solver) and 3 (user-defined pricing functor). By
default, the pricing is solved by the MIP solver, even if the pricing functor is
defined. In the case colGenSubProbSolMode = 3, the constraints of subproblem
formulations are ignored, and thus their definition may be skipped.

mastInitMode = 3 # restricted master problem initialization mode

Possible values here are 1 (global artificial variables), 3 (local artificial variables),
4 (columns from the initial solution provided by the user), 5 (columns from
the initial solution and global artificial variables), 6 (columns from the initial
solution and local artificial variables).

ArtVarPenaltyUpdateFactor = 2.0 # artificial vars cost update factor

ArtVarMaxNbOfPenaltyUpdates = 5 # max. number of updates of these costs

If artificial variables participate in a solution of the master problem, their co-
efficients in the objective function are multiplied by the value of parameter
ArtVarPenaltyUpdateFactor. The maximum number of such multiplications
is defined by parameter ArtVarMaxNbOfPenaltyUpdates. If this number is
reached, BaPCod switches to pure Phase 1 of the column generation procedure
(the objective function is changed to minimizing the sum of values of artificial
variables). If the artificial variables cannot be pushed out of the solution in pure
Phase 1, the master problem is declared to be infeasible.

MaxNbOfStagesInColGenProcedure = 1 # number of col. gen. phases

Column generation phases are used to specify several algorithms for solving
the pricing problems (only in the case the pricing functor is defined). Usually,
during phase zero, the pricing problems are solved exactly, and the larger is the
phase number, the “lighter” is the heuristic algorithm applied. The stages are
solved successively, from phase MaxNbOfStagesInColGenProcedure−1 to phase
zero. Column generation procedure passes to phase k − 1 once phase k has
converged.

GenerateProperColumns = false # generate only "proper" columns or not

If this parameter is set to true, the pricing problem is restricted to generate only
so-called ”proper” columns, i.e. columns which respect bounds on the subprob-
lem variables. In this case, BaPCod will generate an error if the pricing problem
generates a non-proper column. Generating only proper columns usually im-
proves the Lagrangian dual bound produced by column generation. Setting
this parameter to true is necessary if one uses generic subproblem branching
(Vanderbeck branching). Setting this parameter to true is also necessary if one
uses a diving-based primal heuristic (unless a heuristic pricing oracle generating
proper columns is provided).

21

InsertAllGeneratedColumnsInFormRatherThanInPool = true

If this parameter is true, all generated columns are inserted directly in the
restricted master LP, otherwise only the one with the smallest reduced cost
(among columns corresponding to solutions of the same subproblem formula-
tion) is inserted.

InsertNewNonNegColumnsDirectlyInFormRatherThanInPool = true

If this parameter is true, all generated columns are inserted directly in the
restricted master LP, otherwise only columns with negative reduced cost are
inserted.

ColumnCleanupThreshold = 10000

ColumnCleanupRatio = 0.66

Once the number of columns in the restricted master LP exceeds
ColumnCleanupThreshold, only ColumnCleanupRatio part of them (with small-
est reduced cost) remain, and the others are removed. The columns participating
in the basis of the restricted master LP are never removed.

ReducedCostFixingThreshold = 0.9

This is the parameter to determine how often the reduced cost fixing procedure
of the pricing functor is called. It is called if the current integrality gap is less
than ReducedCostFixingThreshold part relative to the integrality gap when
the reduced cost fixing procedure was called the last time. If the value is equal
to 0.0, no reduced cost fixing is performed. If the value is equal to 1.0, reduced
cost fixing is called after each convergence of the column generation prodedure.

3.3 Cut generation parameters

MasterCuttingPlanesDepthLimit = 1000 # max. tree depth for cut generation

MaxNbOfCutGeneratedAtEachIter = 1000 # max. number of cuts added per cut round

These are main parameters to determine when cut separation routines are called
(set the first parameter to -1 to switch off cut generation) and how much cuts
are added at each cut separation round (the upper limit on the overall number
of cuts from all cut separators).

CutCleanupThreshold = 1

If the number of cuts reaches this threshold, all non-active cuts are removed
from the restricted master LP.

CutTailingOffThreshold = 0.02

CutTailingOffCounterThreshold = 3

22

These parameters are used to control the tailing-off condition of cut separation.
The tailing-off counter is initialized with zero in the beginning of each branch-
and-bound node. After a cut generation round, if the relative decrease of the
integrality gap is smaller than the value of CutTailingOffThreshold, then the
tailing-off counter is increased by one. If the previous relative integrality gap is
more than 10%, then the decrease calculated is relative from the lower bound
absolute value multiplied by 0.1. When the tailing-off counter reaches the value
of CutTailingOffCounterThreshold, the tailing-off condition is activated: the
cut separators with smaller priority are called if they are defined, or branching
is performed.

3.4 Stabilization parameters

Implementation of stabilization techniques in BapCod follows the paper [11].
Please cite it if you use stabilization. By default, only the automatic dual price
smoothing stabilization is activated.

Dual price smoothing parameters are the following.

colGenDualPriceSmoothingAlphaFactor = 1.0

colGenDualPriceSmoothingBetaFactor = 0.0

These two parameters correspond to parameters α and β introduced in the pa-
per. The first parameter corresponds to Wentges smoothing [19] and the second
parameter corresponds to directional smoothing. Value 0.0 means that the
technique is not used. Value 1.0 means that the technique is used with auto-
matic parameter setting. Any value in (0, 1) fixes the corresponding parameter
to this value.

Piecewise linear penalty function stabilization [2] parameters are the follow-
ing.

colGenStabilizationFunctionType = 0

colGenProximalStabilizationRule = 1

StabilFuncKappa = 1.0

The first parameter sets the stabilization function type: 0 (penalty function
stabilization is not used), 2 (3-piecewise linear function is used), 3 (5-piecewise
linear function). The second parameter switches between the “curvature mode”
(value 0) and “explicit mode” (value 1), see [11] for details. The third parameter
sets the value for parameter κ introduced in the paper. The penalty function
stabilization should be used with caution as it may deteriorate the column gen-
eration performance. We advice to use 3-piecewise linear function stabilization
in “explicit mode” (only in the case of severe convergence problems). Parameter
κ is very dependent on the problem at hand and even on the instance. Its value
may vary broadly, from 0.001 to 1000 and sometimes even more.

Additional stabilization parameters are

colGenStabilizationMaxTreeDepth = 10000

StabilizationMinPhaseOfStage = 0

23

One can limit the stabilization use only to nodes at maximum depth
colGenStabilizationMaxTreeDepth in the branch-and-bound tree. One can
also limit the stabilization use only to column generation phases with number
StabilizationMinPhaseOfStage and above.

3.5 Primal heuristic parameters

Implementation of primal heuristics in BapCod follows the paper [17]. Please
cite it if you use heuristics. No heuristic is activated by default.

Parameters for the restricted master heuristic are the following

MaxTimeForRestrictedMasterIpHeur = -1

CallFrequencyOfRestrictedMasterIpHeur = 0

MIPemphasisInRestrictedMasterIpHeur = 1

PolishingAfterTimeInRestrictedMasterIpHeur = -1

The first parameter sets the maximum time in seconds for the MIP solver called
to solve the restricted master MIP. The second parameter sets the frequency
of the heuristic. Its value should be 1 to call it at every node of the branch-
and-bound tree. The heuristic is called only at the root node if the value of
the second parameter is not positive. The last two parameters correspond to
parameters CPX_PARAM_MIPEMPHASIS and CPX_PARAM_POLISHAFTERTIME of the
Cplex MIP solver. The restricted master heuristic cannot be used with CLP
solver.

Parameters for the variants of the diving heuristic are the following

DivingHeurUseDepthLimit = -1

CallFrequencyOfDivingHeur = 0

The first parameter sets the maximum depth in the branch-and-bound tree for
using the diving heuristic. If its value is negative, diving heuristic is not used.
The second parameter is equivalent to CallFrequencyOfRestrictedMasterIpHeur.

RoundingColSelectionCriteria = 4 6 9

This parameter determines the criteria for column selection for rounding. This
parameter should be initialized with a chain of integers separated by spaces.
Each integer corresponds to a certain criterion. A criterion is used only if all
previous ones could not select the column for rounding. The criteria are:

2 - highest priority (a column from a higher priority subproblem is preferred)

4 - smallest distance to the closest non-zero integer

5 - distance to the closest non-zero integer weighted by the column cost

6 - closest value to its round-up

9 - least column cost

FixIntValBeforeRoundingHeur = true

24

If set to true, then any column with integer value in the solution will be fixed be-
fore rounding a non-integer column. Otherwise, integer columns will be ignored
(and thus may take different values later in the dive).

MaxNbOfCgIteDuringRh = 5000

This parameter limits the number of column generation iterations in each node
of the diving heuristic.

MaxLDSbreadth = 0

MaxLDSdepth = 0

These parameters correspond to parameters maxDiscrepancy and maxDepth in
the paper. If their values are positive, they serve to control the diving heuristic
with Limited Discrepancy Search.

DivingHeurStopsWithFirstFeasSol = false

If set to true, the diving heuristic will stop as soon as it finds the first feasible
solution (this behaviour corresponds to the “diving for feasibility” heuristic in
the paper).

DivingHeurPreprocessBeforeChoosingVar = false

If set to true, the preprocessing will be launched after rounding of each candidate
column (thus the diving will be slower). If preprocessing determines infeasibility,
the candidate will be discarded and the next one will be considered. When
this parameter is false, a dive is stopped, if the preprocessing determines the
infeasibility.

StrongDivingCandidatesNumber = 1

If the value of this parameter is greater than 1, the strong diving heuristic will
be activated. This parameter corresponds to parameter maxCandidates in the
paper.

EvalAlgParamsInDiving =

This is an optional parameter sequence to set the behaviour of the column and
cut generation procedure at every node of the diving heuristic. The instantiation
of this parameter is similar to the instantiation of the parameters for strong
branching phases (described in Section 3.6). If this parameter sequence is empty,
the same parameters are used as for the column at cut generation in the main
branch-and-bound tree.

The following parameters are for the local search heuristic (corresponds to
the diving heuristic with restarts in the paper).

25

LocalSearchHeurUseDepthLimit = -1

LocalSearchColSelectionCriteria =

LocalSearchHeurUseDepthLimit = 2

MaxFactorOfColFixedByLocalSearchHeur = 0.8

MaxLocalSearchIterationCounter = 3

The first parameter sets the maximum depth in the branch-and-bound tree for
using the local search heuristic. If its value is negative, the heuristic is not
used. The second parameter can be set in the same way as the parameter
RoundingColSelectionCriteria above. The third parameter sets the maxi-
mum depth in the branch-and-bound tree for using the local search heuristic.
The last two parameters correspond to parameters fixRatio and numIterations
in the paper.

Also, the following parameters described above have an impact on the local
search heuristic : MaxNbOfCgIteDuringRh, DivingHeurPreprocessBeforeChoosingVar,
and FixIntValBeforeRoundingHeur.

3.6 Strong branching parameters

The strong branching with phases is implemented in BapCod. Each phase has
its proper parameters given as a sequence of numbers separated by spaces :

StrongBranchingPhaseOne =

StrongBranchingPhaseTwo =

StrongBranchingPhaseThree =

StrongBranchingPhaseFour =

The parameter sequence is empty if the corresponding strong branching phase
is not active, i.e. is not used. For each active phase the order of parameters is
the following

1. Boolean indicating where this phase is exact or not. In the exact phase
the column and cut generation parameters do not change. The exact
phase should always be the last active phase to guarantee the optimality
of the final solution. Candidates in an exact phase are selected using the
minimum estimated tree size rule (see [6] for a method to estimate the
tree size). Candidates in a non-exact phase are selected using maximum
product rule, i.e. according to the product of lower bound increases in the
child nodes.

2. The maximum number of candidates evaluated.

3. Tree size ratio to stop : the maximum number of candidates evaluated in
this phase does not exceed this value multiplied by the estimated size of
the subtree rooted at the father node. If there is no father node (i.e. for
the root), the latter value is equal to infinity.

The next parameters are given only for a non-exact phase.

4. Maximum number of column generation iterations. If this parameter is
zero, no column generation is performed, i.e. only re-optimization of the
restricted master LP is performed.

26

The next parameters are given only for a non-exact phase with column gen-
eration.

5. Minimum phase for the column generation

6. Minimum number of cut generation rounds

7. Maximum number of cut generation rounds

8. Boolean indicating whether the reduced cost fixing is performed.

9. The frequency of column generation output, i.e. the number of column
generation iteration between two consecutive lines in the output. If the
frequency is zero, then only one summary line is shown.

The following is an example of instantiation of the strong branching param-
eters.

StrongBranchingPhaseOne = false 100 0.5 0

StrongBranchingPhaseTwo = false 5 0.1 100 1 0 0 false 0

StrongBranchingPhaseThree = true 1

Here, during the first phase, at most min{100, 0.5e} candidates will be evaluated,
where e is the estimated subtree size of the father node, and only restricted
master will be solved for them without column generation. During the second
phase, the best min{5, 0.1e} candidates from the first phase will be evaluated.
At most 100 column generation iterations will be performed for each node of
each branching candidate. During column generation, all stages except stage
zero will be considered. No cut generation and no reduced cost fixing will be
performed. No column generation statistics will be shown during this phase
(only one summary line). In the third phase, all branches of the best candidate
from the second phase will be evaluated exactly. The purpose for this immediate
evaluation is to estimate the subtree size rooted at the current node. The fourth
phase is not defined and thus it is not active.

Finally, the following parameter is used to activate the simplified setting of
strong branching parameters:

SimplifiedStrongBranchingParameterisation = false

If it is set to true, then the strong branching parameters are set to

StrongBranchingPhaseOne = false <p1 > <p2> 0

StrongBranchingPhaseTwo = false <p3 > <p4> 10000 1 0 0 false 0

StrongBranchingPhaseThree = true 1

StrongBranchingFour =

where <p1>, <p2>, <p3>, and <p4> are set by the following parameters:

StrongBranchingPhaseOneCandidatesNumber = 100 # <p1 >

StrongBranchingPhaseOneTreeSizeEstimRatio = 0.3 # <p2>

StrongBranchingPhaseTwoCandidatesNumber = 3 # <p3>

StrongBranchingPhaseTwoTreeSizeEstimRatio = 0.1 # <p4>

27

4 BaPCod statistics

This section overviews the statistics which can be retrieved after solving the
model (see Section 2.1) for the methods to use.

4.1 Timers

The values of all timers are in ticks. To obtain the time in seconds, the value
should be divided by 100.

bcTimeMain - overall solution time

bcTimeBaP - total branch-cut-and-price time (excludes formulations building
time and the final solution disaggregation)

bcTimeMIPSol - solution time when just a MIP formulation is solved without
decomposition (excludes formulations building time)

bcTimeRootEval - solution time of the root (excluding primal heuristics and
branching)

bcTime1stLP - solution time of the first column generation convergence at
the root (before cut separation)

bcTimeColGen - total column generation time (all time to solve the master
problem including generation of columns)

bcTimeMastMPsol - total time taken for solving the restricted master LPs
by the LP solver

bcTimeCgSpOracle - total time taken for generation of columns (computing
the reduced cost of subproblem variables, solving the pricing problems,
generating the columns from subproblem solutions, and adding columns
to the restricted master LP including computation of column coefficients
in the master constraints)

bcTimeSpUpdateProb - total time taken to compute the reduced cost of
subproblem variables

bcTimeSpMPsol - total time taken to solve the pricing problems

bcTimeSetMast - total time to update the formulations of the master prob-
lem and subproblems before solving a node

bcTimeSepFracSol - total branching time, i.e. generation of branching can-
didates (evaluation of branching candidates in strong branching is not
included)

bcTimeCutSeparation - total time for cut separation

bcTimeAddCutToMaster - total time for adding cuts to the restricted mas-
ter LP (essentially computing coefficients of master variables and columns
in the cuts)

bcTimeRedCostFixAndEnum - total time for reduced cost fixing and enu-
meration

28

bcTimeEnumMPsol - total time to solve enumerated MIPs

bcTimeSBphase1 - total time for evaluating branching candidates during
phase one of strong branching

bcTimeSBphase2 - total time for evaluating branching candidates during
phase two of strong branching

bcTimePrimalHeur - total time for running primal heuristics

Some times may “intersect”. For example, primal heuristic time includes a
part of column generation time (in the case of diving heuristics). Evaluation
time for branching candidates also includes a part of column generation time
and a part of solving the restricted master LPs by the LP solver.

4.2 Records and counters

bcRecRootDb - the lower bound obtained at the root node (rounded up if
the objective function is integer)

bcRecRootLpVal - the value of the master problem solution at the root node
(not rounded even if the objective function is integer)

bcRecBestDb - final lower bound obtained by the branch-and-bound (rounded
up if the objective function is integer)

bcRec1stLPDb - lower bound obtained by the column generation procedure
at the root (before cut separation)

bcRecBestInc - best upper bound (value of the best feasible solution found)
obtained by the branch-and-bound (the solution is optimal if this value is
equal to bcRecBestDb)

bcCountCg - total number of iterations in the column generation procedure

bcCountCol - total number of generated columns (not all columns are neces-
sarily added to the restricted master LP)

bcCountNodeProc - total number of processed nodes in the branch-and-
bound tree

bcCountCutInMaster - total number of cuts added to the restricted master
LP

bcCountMastSol - total number of times the restricted master LP has been
solved by the LP solver

bcCountSpSol - total number of times the pricing problems have been solved

bcCountMastIpSol - total number of times the restricted master has been
solved as a MIP

29

5 BaPCod output

See Section 3.1 for the parameter to change the verbosity of the BaPCod out-
put. It is possible to suppress all output except important warnings and errors.
In the case the output is not suppressed, BaPCod will output the following
information.

At the beginning BaPCod prints its version:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

BaPCod v063, 2/09/2021, © Inria Bordeaux, France

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

At the beginning of every branch-and-bound node, BaPCod outputs the
following information

**
**** BaB tree node (N° 5, parent N° 3, depth 2)
**** Local DB = 831.794, global bounds : [831.794 , 878.08], TIME = 1h22m49s40t = 496940
**** 3 open nodes, 24679 columns (8375 active), 426 dyn. constrs. (199 active),

559 art. vars. (332 active)
**

The first line prints the index of the current node (indices are given in the order
of node creation), index of the father node, and the depth of the current node.
The second line outputs the lower bound value of the current node, the global
lower and upper bounds (valid for the model), and the current elapsed time.
The third line outputs the current number of open branch-and-bound nodes (i.e.
which were created but not yet pruned), and the aggregated information about
the restricted master problem. This information includes the total number of
columns in the memory (number of columns present in the current restricted
master LP), the total number of cuts and branching constraints in the memory
(number of cuts and branching constraints present in the current restricted
master LP), the total number of artificial variables in the memory (the number
of artificial variables present in the current restricted master LP).

During the column generation procedure, BaPCod outputs the following
information

#<DWph=2> <it= 1> <et=4621.25> <Mt= 0.66> <Spt= 1.66> <nCl= 3> <al=0.50> <DB= 817.8515>
<Mlp= 830.2749> <PB=878.08035>

This information includes the current column generation phase (printed only if
the number of phases is more than one), the current column generation iteration
number, the current elapsed time, the time in seconds to solve the restricted
master LP in the current iteration, the total time in seconds taken for gener-
ating columns in the current iteration (includes the time to solve the pricing
problems), the number of columns added to the restricted master LP in the cur-
rent iteration, the current dual pricing smoothing stabilization parameter α (if
dual pricing smoothing stabilization is activated), the value of the Lagrangian
lower bound at the current iteration, the value of the current restricted master
LP (upper bound on the solution value of the master problem), and the value
of the current best known feasible solution of the model (or the initial cut-off
value given if not yet improved). If artificial variables are present in the current
solution of the restricted master LP, then character # is printed in the beginning
of the line.

30

In some cases, one line is printed per several column generation iterations.
This can be recognized if the iteration numbers are not consecutive in two
consecutive lines. In this case the time for solving the restricted master LP, the
time to generate columns, and the number of generated columns are aggregated
for all iterations since the iteration of the previous line (or since the beginning
of the column generation procedure).

If some cuts are added during a cut separation round, BaPCod outputs the
following information

----- Add fac. cuts : R1C(291) SSI(3), max.viol = 0.578033, aver.viol = 0.260438,
sep/add took 1.43/2.13 sec. -----

19840 columns (7441 active), 797 dyn. constrs. (441 active), 1266 art. vars. (574 active)

This information includes whether facultative (fac.) or core (core) cuts were
added, the number of added cuts separately for every family, the maximum
violation among added cuts, the average cut violation among added cuts, and
the times spent for separation and adding cuts to the restricted master LP in
seconds. If zero.viol = # is shown, then there are some generated but non-
violated cuts. These may indicate the presence of a bug in the cut separation
procedure (unless non-violated cuts are intentionally generated). The same
aggregated information about the restricted master problem as in the beginning
of the branch-and-bound node is also printed.

If cut separation routines are called, but no cuts were generated, BaPCod
outputs

----- no cuts found

After a cut separation round and subsequent column generation procedure, BaP-
Cod outputs the relative change of integrality gap (together with the lower
bound value before the previous cut round):

Gap improvement since the last cut separation : 0.0144399 (845.956)

After reaching the tailing-off condition, BaPCod outputs either

----- Cut separators priority level decreased to 1 -----

if cut separators with lower priority exist, or otherwise

----- Cut generation is stopped due to tailing off -----

After evaluation of a branching candidate in strong branching, BaPCod out-
puts the following information

SB phase 1 cand. 9 branch on var U_1_OmastV (lhs=0.2362) : [834.1127, 862.0468],
score = 261.81 (h) <et=3303.55>

This information includes the number of the current strong branching phase,
index of the branching candidate, description of the branching candidate (here
we have branching on the value of variable U1), the left-hand-side value of
the branching candidate (current value of the branching variable or the left-
hand-side value of the branching constraint), solution values for the restricted
master LP for both branches, the score of the branching candidate (the larger
is the score, the better it is) and the current elapsed time. If the branching
candidate was included to the current set of candidates because of its good
previous performance according to the branching history, then character (h)

is printed (otherwise the branching candidate was generated according to the
branching strategy used).

At the end of the solution process, the final values for global lower and upper
bounds are printed together with the overall solution time:

31

**
Search is finished, global bounds : [835.602 , 835.602], TIME = 1h48m56s75t = 653675
**

If values of global bounds are equal, then the best found solution is optimal.

6 VRPSolver extension

VRPSolver extension includes an implementation of the pricing functor which
allows the user to define the subproblems as resource constrained shortest path
problems in graphs. The functor implements the bucket-graph based labeling
algorithm from paper [16] for solving the pricing problem, as well as the corre-
sponding bucket arc elimination procedure (i.e. reduced cost fixing procedure),
and the elementary route enumeration procedure [1]. VRPSolver extension also
implements cut separation functors for rounded capacity cuts [7] and limited
memory rank-1 packing cuts [9], as well as packing set based Ryan-and-Foster
branching, and branching over accumulated resource consumption [10]. We
strongly advise to read paper [12] before using VRPSolver extension. Please,
cite this paper if your are using the VRPSolver extension. For the moment, the
extension is not open-source, and it is distributed only in the compiled form.

To use VRPSolver functors, one needs to include the corresponding header
file:

#include "bcModelRCSPSolver.hpp"

6.1 VRPSolver pricing functor

To create such pricing functor one should use the constructor

BcRCSPFunctor(const BcFormulation & spForm);

Afterwards, this functor should be attached to the subproblem formulation as
described in Section 2.9 (BcRCSPFunctor inherits from BcSolverOracleFunctor).

The information about the resource-constrained path structure should be
given by defining a graph handler of type BcNetwork:

BcNetwork(BcFormulation & bcForm , int numElemSets = 0,

int numPackSets = 0, int numCovSets = 0);

Here bcForm is the subproblem to which we associate the graph. Other three
arguments are the number of elementarity sets, the number of packing sets,
and the number of covering sets. These sets are used to express elementarity,
packing, and covering constraints over the arcs and/or nodes of graphs (see [12]).
The distance matrix for elementarity sets can be passed using the following
method of BcNetwork:

void setElemSetsDistanceMatrix(

const std::vector <std::vector <double >> & matrix);

32

Vertices and arcs of the graph can be defined using the following methods
of BcNetwork:

const BcVertex createVertex ();

const BcArc createArc(int tail , int head , double originalCost);

Here tail and head are the indices of the tail and head vertices of the arc,
and originalCost is the “pure” cost of the arc. The coefficient of a column
representing a path in a graph in the objective function is determined not only
by the “pure” costs of its arcs, but also by objective function coefficients of sub-
problem variables mapped to the arcs (see below how to map arcs to variables).
An important notice here is that a special “cost” subproblem variable should be
communicated to the pricing functor if at least one arc has a non-zero “pure”
cost:

void BcRCSPFunctor :: setPureCostBcVar(BcVar bcVar);

The value of this variable in the subproblem solution representing a path will be
set to the total “pure” cost of arcs which form the path. To define the arc cost
one can alternatively map a variable to a subproblem variable (see below) and
define a coefficient of this variable in the objective function (see Section 2.5).

The source and the sink of the graph can be defined using the following
methods of BcNetwork:

void setPathSource(const BcVertex & vertex);

void setPathSink(const BcVertex & vertex);

Indices of vertices and arcs are always assigned in the order of creation of
vertices and arcs (starting from 0). These indices can be retrieved using methods

int BcVertex ::ref() const;

int BcArc::ref() const;

Vertices and arcs can be retrieved from their indices using the following methods
of the handler BcNetwork:

const BcVertex getVertex(int id) const;

const BcArc getVertex(int id) const;

One can add a vertex or an arc to an elementarity, packing, or covering set
using the following methods defined both for BcVertex and BcArc:

void setElementaritySet(int elemSetId);

void setPackingSet(int packSetId);

void setCoveringSet(int covSetId);

The set indices here should be not less than 0 and smaller than the corresponding
number of elementarity, packing, or covering sets given in the constructor of
BcNetwork.

An arc can be mapped to a variable belonging to the same subproblem using
the following methods of BcNetwork:

33

void addVarAssociation(const BcVar & newvar , const double coeff);

void arcVar(const BcVar & newvar);

The first method defines a mapping with an arbitrary coefficient, whereas the
second method defines a standard mapping introduced in [12]. The standard
mapping has coefficient 1.0. The coefficient of a column respresenting a path in
a graph in a master constraint is determined by the scalar product of the vector
of coefficients of subproblem variables in this constraint and the sum of vectors
of mapping coefficients for the arcs which form the path.

A resource can added by defining the resource handler using the constructor

BcNetworkResource(const BcNetwork & bcNetwork , int id);

Here id is the index of the ressource. All resources should have different indices.
By default, ressources are secondary and disposable (see [12] for the definition of
resource types). To define a main resource or a non-disposable resource, please
use the following methods of BcNetworkResource:

void setAsMainResource ();

void setAsNonDisposableResource ();

Consumption of a resource for an arc can be defined using the following method
of BcNetworkResource:

void setArcConsumption(const BcArc & bcArc , double consumption);

Lower and upper bounds for the accumulated resource consumption can be de-
fined on vertices and/or on arcs using the following method of BcNetworkResource:

void setArcConsumptionLB(const BcArc & bcArc , double consumptionLB);

void setArcConsumptionUB(const BcArc & bcArc , double consumptionUB);

void setVertexConsumptionLB(const BcVertex & bcVertex , double consLB);

void setVertexConsumptionUB(const BcVertex & bcVertex , double consUB);

At most 20 resources can be defined, among which at most two can be main.
The main resource with the smallest index is used to determine the threshold for
the bi-directional labeling algorithm which solves the pricing problem (see [16]).

There is a possibility to define special resources for which the accumulated
resource consumption can be either 0 or 1 (i.e. binary resource). These resources
are declared implicitly by defining consumption of such resources on arcs using
the following method of BcArc:

void addBinaryResourceConsumption(int binaryResId , int consumption)

and by defining accumulated resource consumption bounds using the following
methods of BcVertex:

void setBinaryResourceConsumptionLB(int binaryResId , int lowerBound);

void setBinaryResourceConsumptionUB(int binaryResId , int upperBound);

34

Here lowerBound and upperBound can take either value 0 or value 1. It makes
sense to only define non zero values for the (accumulated) resource consumption
(bounds). The index (id) of a binary ressource can be between 0 and 511. Again,
by default every binary resource is disposable. To declare a binary resource non-
disposable, the following method of BcNetwork can be used:

void setBinaryResourceNonDisposable(const int binaryResId);

Besides solving a BaPCod model with RCSP functors in the standard way,
one can also enumerate all feasible paths in directed graphs associated with
subproblems:

BcSolution BcModel :: enumerateAllColumns(int & nbEnumColumns);

The total number of enumerated columns is returned in nbEnumColumns, it
is equal to -1 if enumeration did not succeed. The enumerated solutions are
returned in the solution chain, see Section 2.6 for details. This method should
be used for very small instances mainly for debugging and teaching purposes.

6.2 VRPSolver cut separation functors

The rounded capacity cuts [7] require an undirected graph G = (V ∪ {0}, E)
with special “depot” node 0. There should be exactly one binary variable xe
associated with every edge e ∈ E. A positive demand dv should be associated
with every non-depot node v ∈ V , and a positive capacity C should be defined.
A rounded capacity cut is defined for a subset S ⊆ V of nodes. It states that
there should be enough paths passing by set S to satisfy path capacity C:

∑
e=(i,j): |{i,j}∩S|=1

xe ≥ 2 ·

⌈∑
i∈S

di/C

⌉
.

To add the functor for separation of rounded capacity cuts (the separation
algorithm follows paper [8]), on should use the constructor

BcCapacityCutConstrArray(const BcFormulation & formulation ,

const int & maxCapacity ,

const std::vector <int > & demands ,

const bool & isFacultative = true ,

const bool & equalityCase = true ,

const int & twoPathCutsResId = -1,

const double & rootPriorityLevel = 1.0,

const double & nonRootPriorityLevel = 1.0);

Here formulation is the master formulation handler, maxCapacity is the value
for capacity C, demands is the vector d of demand values. Argument isFacultative
determines whether cuts are facultative (separated only for fractional solutions)
or core (separated also for integer solutions). Argument twoPathCutsResId

should be equal to -1. The remaining two arguments define the root and non-
root priority level (see Section 2.8). This cut separator is introduced in [12].

The construction of undirected graph G = (V ∪ {0}, E) is based on all
directed graphs defined for subproblems of the BaPCod model. Vertices in

35

directed graphs defined for VRPSolver pricing functors are “projected” into
vertices of graph G. The projection is defined based on packing sets
(equalityCase=true) or on covering sets (equalityCase=false), and on vector
of demands. The first case (equalityCase=true) should be used when exactly
one vertex in every packing set should be visited exactly once (all other vertices
in the set should not be visited). The second case (equalityCase=false) should
be used when at least on vertex in every packing set should be visited at least
once (all other vertices in the set may or may not be visited). A vertex i
in a directed VRPSolver graph is projected into vertex v ∈ V if i belongs to
packing/covering set v and dv is positive. Otherwise, i is projected into depot
vertex 0. An edge (v, v′) belongs to E if there exists an arc (i, j) in a directed
graph of VRPSolver such vertex pair {i, j} projects into vertex pair (v, v′). In
this case, we say that arc (i, j) projects into edge (v, v′). A BaPCod variable
is appropriate for an edge e ∈ E if it binary, mapped with coefficient one only
to (some or all) arcs (i′, j′) or (j′, i′) in directed graphs of VRPSolver which
projects into edge e, and not mapped to any other arc with any coefficient.

Separation of rounded capacity cuts can be used only if

1. packing or covering sets (depending on argument equalityCase) are de-
fined on vertices, i.e. no arc in any directed VRPSolver graph belongs to
packing/covering set;

2. for each VRPSolver graph, each its arc projected to an edge (and not to a
node) in graph G is mapped to exactly one appropriate BaPCod variable.

Appropriate variables are used to generate rounded capacity cuts. Note that
during projection we loose information about arc direction. Nevertheless, the
generated cuts remain valid. Moreover, separation of rounded capacity cuts as
core cuts is sufficient to replace the capacity resource in VRPSolver graphs if

• we are in the equality case (equalityCase=true);

• for every arc in VRPSolver directed graphs there exists an arc in the
opposite direction;

• all vertices in VRPSolver directed graphs except the source and the sink
belong to a packing set;

• all demands are positive and equal to all vertices belonging to the same
packing set;

• path capacity C is equal for all VRPSolver directed graphs.

In this case, declaration of the capacity resource may be skipped in VRPSolver
directed graphs. This may increase the performance when the capacity resource
is not tight (as for some Solomon instances of the Vehicle Routing Problem with
Time Windows).

To add the functor for separation of limited-memory rank-1 cuts, on should
use the constructor

BcLimMemRankOneCutConstrArray(const BcFormulation & formulation ,

const double & rootPriorityLevel = 1.0,

const double & nonRootPriorityLevel = 1.0);

36

Here formulation is the master formulation handler, and the remaining two
arguments define that the root and non-root priority level (see Section 2.8).
Limited-memory rank-1 cuts are introduced in [9]. VRPSolver uses the defini-
tion of packing/covering sets in the model to separate rank-1 packing/covering
cuts (see [16]). VRPSolver pricing functor supports limited-memory rank-1 cuts.

6.3 VRPSolver branching functors

VRPSolver extension includes two functors for separating non-robust branching
constraints (these constraints are supported in the pricing functor).

The first functor implementes separation of packing-set-based Ryan&Foster
branching constraints. To add this functor, one should use the constructor

BcPackSetRyanFosterBranching(const BcFormulation & formulation ,

const double & priorityLevel = 1.0);

Here formulation is the master formulation handler, and priorityLevel is
the branching priority value (see Section 2.7). This functor searches branching
candidates, each of which corresponds to a pair of packing sets (see [12] for
the definition of packing sets). A branching candidate generates two branching
constraints. In the first one, the number of columns corresponding to paths
which include arcs (or vertices) belonging to both packing sets is set be equal
to one. In the second constraint, the number of such columns is set to be equal
to zero.

There is also a possibility to define permanent packing-set-based Ryan&Foster
constraints, using the method of BcNetwork:

void addPermanentRyanAndFosterConstraint(int firstPackSetId ,

int secondPackSetId ,

bool together);

This method adds the following constraint to the subproblems associated with
the graphs. In the case together=false, the path should include arcs (or ver-
tices) belonging to at most one of packing sets firstPackSetId and secondPackSetId.
In the case together=true, the path should include arcs (or vertices) belonging
to non of these packing sets or to both of them.

The second functor implementes branching over accumulated resource con-
sumption, introduced in [10]. To add this functor, one should use the constructor

BcPackSetResConsumptionBranching(const BcFormulation & formulation ,

const double & priorityLevel = 1.0);

Here formulation is the master formulation handler, and priorityLevel is
the branching priority value (see Section 2.7). This functor searches branch-
ing candidates, each of which corresponds to a packing set p, threshold value
τ for accumulated consumption of resource with index 0. A branching can-
didate generates two branching constraints. The first one forbids all columns
corresponding to paths in which an arc (or vertex) belonging to packing set p
is visited when the accumulated consumption of resource 0 is less than τ . The

37

second one forbids all columns corresponding to paths in which an arc (or ver-
tex) belonging to packing set p is visited when the accumulated consumption of
resource 0 is greater or equal to τ .

6.4 VRPSolver paramerization

First of all, the following parameters should be set when using VRPSolver ex-
tension:

MaxNbOfStagesInColGenProcedure = 3

colGenSubProbSolMode = 3

The following additional parameters are defined for the VRPSolver exten-
sion. Please consult [12] for more explanation about these parameters.

RCSPstopCutGenTimeThresholdInPricing = 10

RCSPhardTimeThresholdInPricing = 20

“Soft” and “hard” time thresholds in seconds for the labeling algorithm (τ soft

and τhard in the paper).

RCSPnumberOfBucketsPerVertex = 25

RCSPdynamicBucketSteps = 1

Parameters for calculation of step sizes for buckets (ψbuck and ψreduc in the
paper). Dynamic adjustment of bucket steps is on if RCSPdynamicBucketSteps
takes value 1 and off if it takes values 0.

RCSPuseBidirectionalSearch = 2

Parameter to determine when the bi-directional labeling algorithm is used to
solve the pricing problem (ϕbidir in the paper): 0 — not used, 1 — always used,
2 — used only during the exact column generation phase.

RCSPapplyReducedCostFixing = 1

Parameter to determine which bucket arc elimination (reduced cost fixing) pro-
cedure is used (ϕelim in the paper): 0 — not used, 1 — standard bucket arc
elimination procedure (follows [16]), 2 — light bucket arc elimination procedure
(less strong, but faster), 3 — standard arc elimination procedure (similar to [5]),
4 — light arc elimination procedure.

RCSPmaxNumOfColsPerExactIteration = 150

RCSPmaxNumOfColsPerIteration = 30

Maximum number of generated columns per column generation iteration and
per subproblem with the RCSP pricing functor (γexact, γheur in the paper).
The first parameter is for the exact column generation phase, and the second
parameter is for heuristic column generation phases.

38

RCSPmaxNumOfLabelsInEnumeration = 1000000

RCSPmaxNumOfEnumeratedSolutions = 1000000

RCSPmaxNumOfEnumSolutionsForMIP = 10000

RCSPmaxNumOfEnumSolsForEndOfNodeMIP = 0

The first two parameters are for the maximum number of labels and paths in
the elementary path enumeration procedure (ωlabels and ωroutes in the paper).
The third parameter is for the maximum total number of enumerated paths to
trigger the solving of enumerated MIP (ωMIP). The fourth parameter is for the
maximum total number of enumerated path to trigger the solving of enumerated
MIP at the of a branch-and-bound node. The last parameter is active only if
its value is greater than the value of the third parameter. Solving enumerated
MIP is not supported if the CLP solver is used instead of CPLEX.

RCSPinitNGneighbourhoodSize = 8

RCSPmaxNGneighbourhoodSize = 8

Initial and maximum size of ng-sets (ηinit and ηmax in the paper).

RCSPrankOneCutsMaxNumPerRound = 100

RCSPrankOneCutsMaxNumRows = 5

RCSPrankOneCutsMemoryType = 2

RCSPrankOneCutsLSnumIterations = 1000

Parameters for separation of limited-memory rank-1 cuts. First three ones cor-
respond to parameters θnum, θrows, θmem in the paper. Possible values for the
third parameters are: 0 — automatic selection of node- or arc-memory (the
root node may be solved two times in this case), 1 — arc-memory is used, 2 —
node-memory is used. The fourth parameters sets the number of iterations in
the local search heuristic to separate rank-1 cuts with four rows and more.

RCSPallowRoutesWithSameVerticesSet = true

Whether multiple paths which pass by the same set of vertices (in different order)
can be generated in the same iteration of the column generation procedure.
Setting this parameter to false may improve convergence (as more diversified
set of paths is generated in every column generation iteration) but may slow
down the labelling algorithm as the additional check is necessary.

RCSPredCostFixingFalseGap = 0.0

If the value of this parameter is ≤ 1.0 that it has no effect. If its value is > 1.0
then reduced cost fixing and enumeration are performed with the primal-dual
gap is divided by this value, making the whole branch-cut-and-price algorithm
heuristic. More about the false gap mechanism can be found in paper [14].

SafeDualBoundScaleFactor = -1

39

If this parameter is positive, it activates the calculation of the safe dual bound
(parameter K̃ in the paper). This may be important to avoid rounding errors
when the objective function is to minimize the number of paths in the solution.
Safe lower bounds for column generation were introduced in [4].

The following parameters are used to activate the primal heuristic which is
based on the elementary path enumeration with false gap. This heuristic was
proposed in [13] and was also used in [14].

RCSPmaxNumOfLabelsInHeurEnumeration = 0

MaxNumEnumSolsInRestrictedMasterIpHeur = 5000

If the first parameter is positive, then the elementary path enumeration is trig-
gered at the end of a some branch-and-bound nodes (depends on parameter
CallFrequencyOfRestrictedMasterIpHeur). The primal-dual gap is divided
by two each time the enumeration does not succeed for at least one subproblem
associated to the RCSP pricing functor. After succeeding enumeration, at most
MaxNumEnumSolsInRestrictedMasterIpHeur columns corresponding to paths
with the smallest reduced cost are added to the restricted master, and the latter
is solved as a MIP. The restricted master heuristic parameters (see Section 3.5)
also apply here. Again, this primal heuristic cannot be used with the CLP
solver.

6.5 VRPSolver output

To activate additional output of the VRPSolver extension, one needs to set
parameter

DEFAULTPRINTLEVEL = 0

During the initialization of each RCSP pricing functor, the following infor-
mation is shown:

RCSP solver info : symmetric case is detected for graph G_0!
Bidirectional border value is initialised to 100
RCSP solver info : number of forw. reachable buckets /

buck. strongly connected components is 3856(97.5709%) / 1931(50.0778%)

The information whether the symmetric case is detected, the initial value for
the bi-directional threshold, and the initial number of reachable buckets and
the number of strongly connected components in the bucket graph (together
with the percentage from the total number of buckets). See paper [16] for an
additional explanation.

After each execution of the exact bucket-graph based labeling algorithm (see
paper [16]) to solve the RCSP pricing problem, some statistics are shown:

RCSP exact solver info for graph G_0 : TT = 0.092659, pt = 0.000274, dt = 0.079908,
ct = 0.009966, ndl = 18’, bdl = 466’, odl = 15’, odf = 136’, bsi = 1’, cnt = 22’,
bdch = 3616’, odch = 280’, lcp = 189’, #sols = 150

This statistics include:

• the index of the subproblem to which the directed graph is associated (G_0
means index 0);

40

• TT: the total labelling time in seconds

• pt: preparation time in seconds (retrieving information about reduced
costs and non-robust cuts)

• dt: dynamic programming time in seconds (extension of labels and dom-
inance checks)

• ct: concatenation time in seconds (in the bi-directional labeling)

• ndl : number of non-dominated labels in thousands

• bdl : number of labels dominated by labels in the same bucket, in thou-
sands

• odl : number of labels dominated by labels in different buckets, in thou-
sands

• odf : number of times the function which checks the dominance between
a label and all labels in a different bucket is called, in thousands

• bsi : number of times a bi-directional solution is inserted to the pool of
solutions of the labeling algorithm, in thousands

• cnt : number of times a pair of forward and backward labels is tried for
concatenation, in thousands

• bdch : number of dominance checks between labels in the same bucket, in
thousands

• odch : number of dominance checks between labels in different buckets,
in thousands

• lcp : number of times a label is copied in the memory, in thousands

• #sols : number of solutions generated by the labeling algorithm

Every time the bucket arc elimination (reduced cost fixing) procedure is
launched, the following information is printed:

Reduced cost fixing for graph G_0... 40752 buck. arcs remain (79.1% from prev., 3.69% from max.)
+ 41953 jump buck. arcs (3.8% from max.)
TT = 2.81583, pt = 0.450316, dt = 1.11438, ct = 1.24473, ndl = 307’, bdl = 1252’, odl = 30’,
odf = 1139’, lpcb = 1790’, cnt = 20528’, bdch = 40847’, odch = 28678’, lcp = 9921’

Labels distribution in buckets (bucket size) : largest - 507, top 0.1% - 472, top 0.5% - 376,
top 2% - 277, top 10% - 114, top 50% - 9

Run forward enumeration with border = 100... succeeded! lpt = 1.53273, ndl = 95’, dl = 6’,
lpcb = 912’, dch = 125’

Run enumeration concatenation with time limit 30.2322 sec.... succeeded!
Sorting and storing enumerated solutions ... done!
TT = 3.1909, pt = 0, dt = 1.53273, ct = 0.937832, ndl = 95’, bdl = 6’, lpcb = 912’, cnt = 11817’,
bdch = 125’, odch = 0’, lcp = 0’

Enumeration succeeded!, number of elem. solutions is 103246
Estimating inspection time... TT = 0.061083, performed by inspection with 103246 solutions
Inspection time is low enough. Pricing will be done by inspection.
Removed 5445 columns (not in the enumerated set) from the formulation
Regenerated 2114 columns with the ’enumerated’ flag

41

First, the number of remaining bucket arcs after the reduced cost fixing proce-
dure is printed for each direction together with the percentage from the number
of bucket arcs before the procedure and from the maximum possible number of
bucket arcs. Then the statistics of the reduced cost fixing procedure are printed
(similarly to the standard labelling algorithm). The time to determine whether
a bucket arc can be eliminated or not is included in the concatenation time.
Then, the labels distribution statistics is shown, i.e. the number of labels in
the largest bucket, and the minimum number of labels in 0.1%, 0.5%, 2%, 10%,
and 50% of largest buckets. Afterwards, the elementary path enumeration pro-
cedure is attempted, and its statistics are shown (which are again similar to to
the standard labelling statistics, except that there is no buckets). If enumer-
ation procedure succeeds, the number of elementary solutions is shown. Then
the inspection of these solutions (to calculate their reduced cost) is tried. If the
inspection time is sufficiently low, the pricing problem passed to the “enumer-
ated mode”. Then VRPSolver outputs the number of columns removed from
the restricted master (because they do not correspond to any elementary so-
lution in the enumerated set) and the number of columns regenerated (their
coefficients in master constrains may change as rank-1 cuts has full memory in
the enumerated mode).

When the elementary path enumeration procedure does not succeed, the
ratio between the final number of non-extended labels and the total number of
non-dominated labels is shown:

Run forward enumeration with border = 100... not succeeded (ratio 0.513939)

The closer this ratio to zero, the closer is the enumeration procedure to be
successful.

If the reduced cost fixing procedure is not called, then this information is
shown:

Full reduced cost fixing is not called (gap ratio is 0.959188)
Dynamic params and stats : aver.obdmd = 44.8224, aver.buck.num. = 51, nbR1C = 274

with avMem = 11.3285

This information contains the ratio of the current primal-dual gap in comparison
with the primal-dual gap when the reduced cost fixing procedure was called the
last time (this ratio should be below the value of parameter
ReducedCostFixingThreshold to trigger the procedure). The information in
the next line contains the average value for the maximum depth when checking
domination between labels in different buckets, the average number of buckets
per vertex, the number of active rank-1 cuts, and their average memory size.

When separating rank-1 cuts, the number of generated cuts for each number
of rows is shown together with the statistics for maximum and average violation:

3 Rank-1 1-rows pack. cuts added , max viol. = 0.0275816, aver. viol. = 0.0243375

88 Rank-1 3-rows pack. cuts added , max viol. = 0.104368, aver. viol. = 0.0337835

Building structures for heuristic rank-1 packing cut separation...done!

96 Rank-1 4-rows pack. cuts added , max viol. = 0.0791168, aver. viol. = 0.0348517

100 Rank-1 5-rows pack. cuts added , max viol. = 0.100438, aver. viol. = 0.0599266

7 Perspectives

BaPCod is a prototype (proof-of-concept) academic code. Bugs and numerical
issues are expected. Thus, BaPCod is distributed for an academic use without

42

any warranty. The user support is not guaranteed. Although critical issues
and bugs will be addressed by request, possibly with a delay. Corrections and
extensions of this user guide will also be done by request. No major developpe-
ment of BaPCod is planned in the future. On the other side, the work on the
VRPSolver extension will likely continue. We plan to extend modelling capabil-
ities, implement additional cut separation functors, and to improve the overall
efficiency of VRPSolver.

Acknowledgements

We appreciate financial support from Inria, Université de Bordeaux, Institute
de Mathématiques de Bordeaux, and CNRS (Centre Nationale de la Recherche
Scientifique, France).

We would like to thank many people who contributed to the design, im-
plementation, and maintenance of BaPCod and VRPSolver extension: Issam
Tahiri, Laurent Facq, Boris Detienne, Aurélien Froger, François Clautiaux,
Pierre Pesneau, Artur Pessoa, Eduardo Uchoa, Halil Şen, Jinil Han, Céline
Saubatte, Franck Labat, Romain Leguay, Teobaldo Bulhões, Guillaume Mar-
quez, Eduardo Queiroga, Adeline Fonseca. The names are listed in no particular
order.

References

[1] Roberto Baldacci, Nicos Christofides, and Aristide Mingozzi. An exact
algorithm for the vehicle routing problem based on the set partitioning
formulation with additional cuts. Mathematical Programming, 115:351–
385, 2008.

[2] Hatem M.T. Ben Amor, Jacques Desrosiers, and Antonio Frangioni. On the
choice of explicit stabilizing terms in column generation. Discrete Applied
Mathematics, 157(6):1167 – 1184, 2009.

[3] Jacques Desrosiers and Marco E. Lübbecke. Branch-price-and-cut algo-
rithms. In Wiley Encyclopedia of Operations Research and Management
Science. American Cancer Society, 2011.

[4] Stephan Held, William Cook, and Edward C. Sewell. Maximum-weight
stable sets and safe lower bounds for graph coloring. Mathematical Pro-
gramming Computation, 4(4):363–381, 2012.

[5] Stefan Irnich, Guy Desaulniers, Jacques Desrosiers, and Ahmed Hadjar.
Path-reduced costs for eliminating arcs in routing and scheduling. IN-
FORMS Journal on Computing, 22(2):297–313, 2010.

[6] O Kullmann. Handbook of Satisfiability, chapter Fundaments of branching
heuristics, pages 205–244. IOS Press, Amsterdam, 2009.

[7] G. Laporte and Y. Nobert. A branch and bound algorithm for the capaci-
tated vehicle routing problem. Operations-Research-Spektrum, 5(2):77–85,
Jun 1983.

43

[8] Jens Lysgaard, Adam N. Letchford, and Richard W. Eglese. A new branch-
and-cut algorithm for the capacitated vehicle routing problem. Mathemat-
ical Programming, 100(2):423–445, Jun 2004.

[9] Diego Pecin, Artur Pessoa, Marcus Poggi, and Eduardo Uchoa. Improved
branch-cut-and-price for capacitated vehicle routing. Mathematical Pro-
gramming Computation, 9(1):61–100, 2017.

[10] Artur Pessoa, Ruslan Sadykov, and Eduardo Uchoa. Solving bin packing
problems using vrpsolver models. Operations Research Forum, 2(2):20,
2021.

[11] Artur Pessoa, Ruslan Sadykov, Eduardo Uchoa, and François Vander-
beck. Automation and combination of linear-programming based stabiliza-
tion techniques in column generation. INFORMS Journal on Computing,
30(2):339–360, 2018.

[12] Artur Pessoa, Ruslan Sadykov, Eduardo Uchoa, and François Vanderbeck.
A generic exact solver for vehicle routing and related problems. Mathemat-
ical Programming, 183:483–523, 2020.

[13] Artur Pessoa, Eduardo Uchoa, and Marcus Poggi de Aragão. A robust
branch-cut-and-price algorithm for the heterogeneous fleet vehicle routing
problem. Networks, 54(4):167–177, 2009.

[14] Eduardo Queiroga, Ruslan Sadykov, and Eduardo Uchoa. A popmusic
matheuristic for the capacitated vehicle routing problem. Computers &
Operations Research, page 105475, 2021.

[15] D. M. Ryan and B. A. Foster. An integer programming approach to schedul-
ing. In A. Wren, editor, Computer Scheduling of Public Transport Urban
Passenger Vehicle and Crew Scheduling, pages 269 – 280. North-Holland,
Amsterdam, 1981.

[16] Ruslan Sadykov, Eduardo Uchoa, and Artur Pessoa. A bucket graph–
based labeling algorithm with application to vehicle routing. Transportation
Science, 55(1):4–28, 2021.

[17] Ruslan Sadykov, François Vanderbeck, Artur Pessoa, Issam Tahiri, and
Eduardo Uchoa. Primal heuristics for branch-and-price: the assets of diving
methods. INFORMS Journal on Computing, 31(2):251–267, 2019.

[18] François Vanderbeck. Branching in branch-and-price: a generic scheme.
Mathematical Programming, 130(2):249–294, 2011.

[19] Paul Wentges. Weighted dantzig–wolfe decomposition for linear mixed-
integer programming. International Transactions in Operational Research,
4(2):151–162, 1997.

44

	Introduction
	Code structure
	Installation
	Generation of the BaPCod shared library
	Creating a new application
	Running a demo or application
	Citing BaPCod

	Modelling language
	Environment handler
	Model handler
	Formulation handlers
	Variables and constraints
	Objective function
	Solution handler
	Branching
	Separation of cutting planes
	Pricing functor

	BaPCod configuration
	Main parameters
	Column generation parameters
	Cut generation parameters
	Stabilization parameters
	Primal heuristic parameters
	Strong branching parameters

	BaPCod statistics
	Timers
	Records and counters

	BaPCod output
	VRPSolver extension
	VRPSolver pricing functor
	VRPSolver cut separation functors
	VRPSolver branching functors
	VRPSolver paramerization
	VRPSolver output

	Perspectives

